TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section I Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functional Description</td>
<td>1</td>
</tr>
<tr>
<td>1. Backhead</td>
<td>2</td>
</tr>
<tr>
<td>2. Pin</td>
<td>2</td>
</tr>
<tr>
<td>3. Backhead Bearing</td>
<td>2</td>
</tr>
<tr>
<td>4. Check Valve</td>
<td>2</td>
</tr>
<tr>
<td>5. Check Valve Spring</td>
<td>2</td>
</tr>
<tr>
<td>6. Check Valve Guide</td>
<td>2</td>
</tr>
<tr>
<td>7. Choke</td>
<td>2</td>
</tr>
<tr>
<td>8. Feed Tube</td>
<td>2</td>
</tr>
<tr>
<td>9. Piston</td>
<td>3</td>
</tr>
<tr>
<td>10. Case</td>
<td>3</td>
</tr>
<tr>
<td>11. Snap Ring</td>
<td>3</td>
</tr>
<tr>
<td>12. Bit Bearing</td>
<td>3</td>
</tr>
<tr>
<td>13. Bit Bearing Retainer O-Ring</td>
<td>3</td>
</tr>
<tr>
<td>14. Bit Retaining Rings</td>
<td>3</td>
</tr>
<tr>
<td>15. Chuck</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section II Maintenance</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disassembly</td>
<td>4</td>
</tr>
<tr>
<td>Piston Sleeve Removal</td>
<td>6</td>
</tr>
<tr>
<td>Inspection</td>
<td>10</td>
</tr>
<tr>
<td>General Assembly</td>
<td>13</td>
</tr>
<tr>
<td>Hammer Assembly</td>
<td>13</td>
</tr>
<tr>
<td>Backhead / Feed Tube Assembly</td>
<td>13</td>
</tr>
<tr>
<td>Piston Sleeve Insertion</td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section III Parts Identification</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCS5 Exploded View</td>
<td>16</td>
</tr>
<tr>
<td>Part Number Reference</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section IV Air Consumption Charts</th>
<th>Page</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Section V Lubrication</th>
<th>Page</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Section VI Storage</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short Term</td>
<td>19</td>
</tr>
<tr>
<td>Long Term</td>
<td>19</td>
</tr>
<tr>
<td>Restarting</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section VII Button Bit Maintenance</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>21</td>
</tr>
<tr>
<td>Sharpening</td>
<td>21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section VIII DCS5 Recommended Spares</th>
<th>Page</th>
</tr>
</thead>
</table>
LIMITED WARRANTY

Numa warrants that the Product will be new and free from defects in material and workmanship under normal use as contemplated by this Contract for a period of six (6) months from the date of shipment.

Except for the foregoing warranty, Numa disclaims all warranties and representations wherever made, including warranties of merchantability, durability, length of service, or fitness for a particular purpose.

Any alteration or modification of the original product without the express written consent of Numa will void this warranty.

REMEDY

If, during such warranty period, Buyer promptly notifies Numa in writing of any defect and establishes that the above warranty is not met, Numa shall either repair or replace the Product or credit the customer, as it deems necessary to meet the warranty.

Such repair, replacement, or credit of Product shall constitute complete fulfillment of Numa's obligation under this warranty, and upon the expiration of the original warranty period, all of Numa's obligations hereunder shall terminate.

LIMITATION OF LIABILITY

Numa shall not be liable to Buyer whether in contract, in tort (including negligence and strict liability), under any warranty or otherwise, for any special, indirect, incidental or consequential loss or damage whatsoever, including (without limitation) loss arising from delay, cost or capital and loss of profits or revenues. The remedies set forth in this Contract are exclusive, and the total cumulative liability of Numa under this Contract or for any act or omission in connection therewith or related thereto, whether in contract, in tort (including negligence and strict liability), under any warranty or otherwise, is limited to the price paid by Buyer for the Product.

The WARNINGS, CAUTIONS and NOTES used throughout the text of this instruction book are defined as follows:

WARNING
A specific procedure or practice that must be strictly followed, or a specific condition that must be met, to prevent possible bodily harm.

CAUTION
A specific procedure or practice that must be strictly followed, or a specific condition that must be met, to prevent damage to the equipment.

NOTE
Important supplemental information.

Numa®, Champion®, and Patriot® are registered trademarks of Numa.
SECTION I
DESCRIPTION

GENERAL DESCRIPTION

The DCS5 is a pneumatically operated tool designed to utilize QL5 5-1/2" to 6-1/8" (140 mm to 156 mm) diameter bits in rock formations under a wide range of operating conditions.

The DCS5 hammer design incorporates a reversible, hardened case. The single bore design allows for a maximum bore diameter in conjunction with optimum life against abrasion. The simple design of the DCS5 provides performance and dependability without sacrificing tool life.

The DCS5 is designed for universal applications using air pressure from 150 PSI to 500 PSI (10.2 Bar to 34.5 Bar) with compressors having capacities of 335 CFM (158 Litres/Second) or more. When drilling conditions require supplementary hole cleaning, additional hole cleaning air can be passed through the hammer by utilizing an interchangeable choke. All standard hammers shipped from Numa have a blank choke installed. Refer to page 17 for correct choke selection and pages 5 and 13 to facilitate the removal and the installation of the choke. The DCS5 hammer is a high performance tool which may require additional downfeed to maximize performance. Please contact your local Numa Representative for further details.

<table>
<thead>
<tr>
<th>DCS5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight w/o Bit</td>
</tr>
<tr>
<td>Outside Diameter</td>
</tr>
<tr>
<td>Hammer Length:</td>
</tr>
<tr>
<td>Shoulder to Shoulder</td>
</tr>
<tr>
<td>Shoulder to Bit Face</td>
</tr>
<tr>
<td>Backhead API Thread</td>
</tr>
</tbody>
</table>

Table 1-1 General Hammer Specifications

<table>
<thead>
<tr>
<th>Size</th>
<th>Diameter</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-1/2"</td>
<td>140 mm</td>
<td>33 lbs. (15 kg)</td>
</tr>
<tr>
<td>5-3/4"</td>
<td>146 mm</td>
<td>34 lbs. (16 kg)</td>
</tr>
<tr>
<td>6"</td>
<td>152 mm</td>
<td>36 lbs. (16 kg)</td>
</tr>
<tr>
<td>6-1/8"</td>
<td>156 mm</td>
<td>36 lbs. (16 kg)</td>
</tr>
</tbody>
</table>

Table 1-2 General Bit Specifications

NOTE
NUMA 5-1/2" TO 6-1/8" (140 MM TO 156 MM) BITS ARE AVAILABLE IN CONCAVE, CONVEX OR FLAT FACE DESIGNS WITH LARGE AIR FLUSHING HOLES AND CHIP WAYS TO TAKE ADVANTAGE OF THE DCS5 PERFORMANCE. OTHER SIZES MAY BE AVAILABLE UPON REQUEST.
FUNCTIONAL DESCRIPTION

1. BACKHEAD

The backhead connects the hammer to the drill rod. It is threaded into the top end of the case with double start threads and into the drill rod with a standard 3-1/2 API REG thread. Wrench flats are provided for disassembling.

2. PIN

The pin aligns the feed tube assembly into the backhead. It is made of hardened steel to insure long life.

3. BACKHEAD BEARING

The backhead bearing aligns and seals the backhead into the case bore.

4. CHECK VALVE

The check valve maintains pressure in the hammer when the air supply has been shut off. The pressure in the hammer balances the hydrostatic pressure in the hole thereby preventing contaminants from entering the hammer.

5. CHECK VALVE SPRING

The check valve spring provides tension under the check valve to keep it closed. It is compressed as the air is turned on.

6. CHECK VALVE GUIDE

The check valve guide is seated in the feed tube and maintains the proper location of the check valve and check valve spring.

7. CHOKE

The interchangeable choke is located in the tip of the feed tube and is held in place with a press fit. A set of four chokes is supplied with each hammer. By installing the correct choke, the hammer can be fine tuned to the compressor package.

8. FEED TUBE

The feed tube supplies the main air into the chambers located in the piston. It is connected to the backhead by the pin. The feed tube is designed with a long bearing surface to maintain alignment in the backhead.
9. PISTON

The piston functions as one of the only moving parts in the hammer, controlling the operational air cycle. The percussive action of the piston striking the bit transfers the energy through the bit in order to fracture rock formations. A snap ring inserted in the main bore prevents the piston from sliding out of the case when the chuck, bit, bit retaining rings and bit bearing are removed.

10. CASE

The case is designed to contain the internal parts which make up the hammer assembly. The case is reversible and hardened to resist wear and to extend life in abrasive conditions. Double start threads on each end of the case allow for ease of disassembly.

11. SNAP RING

A snap ring positions the internal parts in the hammer and prevents the piston from falling out when the chuck, bit retaining rings and bit are removed.

12. BIT BEARING

The bit bearing guides the bit to insure proper alignment between the piston and the bit. The bit bearing is placed into the chuck end of the case and is located by a snap ring which is inserted into the main bore.

13. BIT BEARING RETAINER O-RING

The bit bearing retainer o-ring sits in a groove in the case and retains the bit bearing.

14. BIT RETAINING RINGS

The bit retaining rings are designed to allow the bit to move between the drilling and cleaning positions and prevent the bit from coming completely out of the hammer. The bit retaining rings consist of two matched halves and are held together with the bit retaining ring o-ring.

15. CHUCK

The chuck threads into the bottom end of the case with double start threads. It has internal splines that mesh with the splines on the bit body to transmit rotation.
SECTION II
MAINTENANCE

DISASSEMBLY

• If at all possible, the backhead and chuck should be broken loose on the drill rig; this is much easier than trying to do so after the drill has been removed from the drill rig.

CAUTION
USE CAUTION WHEN HANDLING DOWN THE HOLE HAMMER PARTS. NUMA HAMMER PARTS ARE MANUFACTURED FROM HARDENED, HEAT TREATED MATERIALS. DROPPING OR STRIKING THESE PARTS MAY CAUSE SEVERE DAMAGE. STRIKING THE HAMMER PARTS WITH HAMMERS, CROWBARS OR LIKE INSTRUMENTS WILL VOID THE WARRANTY.

• Maintenance should be performed in a clean environment.

• Tools needed: hammer stand, chain vise, 2" (51 mm) diameter brass rod, a drift pin, a small screwdriver, rubber mallet, and a 1/2" (13 mm) diameter 24" (610 mm) long steel rod.

• Clean the outside of the hammer. This will insure a good surface to clamp on.

• Place the hammer horizontally on a hammer stand and secure the hammer with a chain vise. Place the chain vise on the area of the case where the bit bearing is housed when working on the chuck end of the hammer.

CAUTION
THE ACCEPTABLE CLAMPING AREAS START 4" (102 MM) FROM EITHER CASE END, TO AN ADDITIONAL 3" (76 MM) BEYOND THIS POINT. PLACING THE CHAIN VISE ON THE AREA OF THE CASE WHERE THE PISTON CYCLES OR ON THE THREADED AREAS CAN DISTORT THE CASE AND THE CASE THREADS, RESTRICT PISTON MOVEMENT AND VOID THE WARRANTY.

• Unscrew the backhead / feed tube assembly from the case.

• Slide the piston out of the case. Removal of the piston sleeve is not necessary for routine maintenance. If necessary, see page 6 for piston sleeve removal instructions and page 14 for piston sleeve insertion instructions.

• Unscrew the chuck and remove from the case.

• Remove the bit retaining rings from the case. Remove the bit retaining rings o-ring from the bit retaining rings.
• Removal of the bit bearing retainer o-ring, bit bearing and the snap ring in the chuck end is not necessary for routine maintenance. If necessary, use a small screwdriver or similar device to pick the bit bearing retainer o-ring from the groove. Slide the bit bearing out the chuck end of the case. Slide the piston into the backhead end of the case with the serial number of the piston facing the chuck end of the case. With a 2" (51 mm) diameter brass rod, tap or press on the piston to remove the snap ring.

• To disassemble the backhead / feed tube assembly, stand the backhead / feed tube assembly on a bench, with the API thread facing down.

• Using a drift pin, tap the pin out of the backhead / feed tube assembly.

• Lift the feed tube assembly out of the backhead.

• Remove the feed tube o-ring from the feed tube.

• Removal of the check valve guide and choke are not necessary for routine maintenance. If necessary, use a 1/2" (13 mm) diameter, 24" (610 mm) long rod and tap the choke downward, toward the check valve guide. Continue tapping both the choke and check valve guide out of the feed tube.

• Using a screwdriver, remove the backhead bearing from the groove located on the outside diameter.

• Remove the backhead o-ring from the backhead.

• Remove the check valve and check valve spring from the backhead.
PISTON SLEEVE REMOVAL

- It is not necessary to remove the sleeve for routine maintenance. If it becomes necessary refer to the following steps and illustrations. You will need a sleeve removal tool #016723, a 1/2" rod at least 16" long, and a hammer or press.

- Lay the piston horizontal on a clean work area. Putting oil in the piston undercut and end bore will make removal of the sleeve much easier. Use your finger or screw driver to move the sleeve, located in the non-striking end, to the near shoulder of the undercut as shown in figure 2-2A. The sleeve has a cut along it, position the cut at the bottom or 6 o’clock position shown in figure 2-2D. Slide the removal tool into the piston to the location shown in figure 2-2A.

- With your finger or screw driver pivot the removal tool as shown in figure 2-2B. Use the 1/2" rod to flip the removal tool to the vertical position, (refer to figure 2-2C).
• With the removal tool in the vertical position make sure the cut in the sleeve is at the bottom or 6 o’clock and the removal tool is contacting both sides of the cut, (refer to figure 2-2D).
While keeping the rod against the removal tool as shown in figure 2-2E, use the rod to rotate the piston to a vertical position as shown in figure 2-2F.
• Use a hammer or press to force the sleeve down into the small bore of the piston. The sleeve will coil into the small bore, (refer to figure 2-2G).

• Once the sleeve is coiled in the small end bore of the piston, remove the rod and flip the piston 180 degrees to allow the removal tool to fall out. Do not continue to force the sleeve out of the piston using the removal tool once the sleeve is coiled in the small bore and flush with the end of the piston as shown in figure 2-2G. The removal tool will not fit through the small end bore and will cause damage to the bore the sleeve rides in.

• Once the sleeve removal tool is out of the piston, lay the piston horizontal as shown in figure 2-2H. Insert the 1/2" rod into the strike end of the piston to finish pushing the sleeve out of the piston. It will not take much force to push the sleeve the remainder of the way out the piston.

WARNING
BE ADVISED THE SLEEVE IS UNDER TENSION AND MAY SPRING WHEN LEAVING THE PISTON BORE. USE A GLOVED HAND TO CAPTURE THE SLEEVE.

• Discard sleeve and replace with new sleeve. See page 14 for sleeve insertion.

CAUTION
ALTHOUGH THE SLEEVE MAY APPEAR TO BE IN GOOD CONDITION, THE SLEEVE CANNOT BE REUSED ONCE IT IS REMOVED FROM THE PISTON.
INSPECTION

- All parts should be washed in a clean solvent before they are inspected and reassembled.

WARNING

USE CLEANING FLUIDS THAT ARE NONFLAMMABLE AND AVOID BREATHING THE FLUID VAPORS.

- Handle all parts carefully, hardened parts may chip if dropped on a hard surface.

BACKHEAD

- Inspect the threads and pin hole for cracks and burrs.
- Remove all burrs on the thread with a fine file.
- Replace if necessary.

BACKHEAD BEARING

- Check for gouges or irregularities.
- Replace if necessary.

CHECK VALVE

- The check valve should be smooth and free from abrasions.
- Replace if necessary.
- Replace the check valve spring if it is worn or broken.

FEED TUBE

- Inspect the outside diameter for nicks, burrs and scoring.
- Inspect all makeup surfaces for indentations or nicks caused by wear.
- Remove all minor irregularities with emery cloth.
- Replace if necessary.
PIN

- Inspect pin for scoring or cracks.
- Replace if necessary.

SNAP RING

- Inspect the snap ring for severe wear indications.
- Remove or round over any sharp edges.
- Replace if necessary.

PISTON

- Inspect the striking face, inside and outside diameters for nicks, scoring and cracks.
- Polish the piston with emery cloth to remove all minor irregularities, cracked pistons should be replaced.
- Inspect the reciprocating sleeve located in a bore in the non-strike end of the piston. There is a cut that runs the length of the sleeve. This is normal. Check the sleeve for other defects and replace if necessary.
- Wash the piston thoroughly, inside and out, to remove all emery dust.

CASE

- Inspect the outside diameter for excessive wear or cracks. Inspect the internal case bore for scoring.
- Remove all minor irregularities with fine honing stones.
- Clearance between the piston and the case should not exceed .012" (.30 mm).
- Select the larger diameter end of case to be the chuck end. Replace if the outside diameter is worn to 4.475" (114 mm) or less near the chuck end.
BIT BEARING

- Inspect the inside and outside for nicks and burrs.
- Remove all internal irregularities with a fine honing stone.
- Remove all external irregularities with an emery cloth.
- Clearance between the bit shank and bit bearing should not exceed .012" (0.30 mm).
- Replace if necessary.

BIT RETAINING RINGS

- Inspect for cracks or deformations.
- Remove all irregularities with a file or emery cloth.
- Replace if necessary.

CHUCK

- Inspect for cracks and burrs.
- For continued use, the outside diameter should be larger than the outside of the case or the same. Collar length should not be less than 1-7/8" (47 mm).

CAUTION
IF THE COLLAR LENGTH IS LESS THAN 1-7/8" (47 MM) AND THE BIT IS UNDER LOAD CONDITIONS, CONTACT BETWEEN THE SHOULDER OF THE BIT RETAINING RINGS AND THE BOTTOM OF THE BIT RETAINING RING AREA ON THE BIT, COULD CAUSE THE BIT TO FAIL IN THIS AREA.

- Torsional play in the splines should not exceed .125" (3.2 mm).
- Replace if necessary.

O-RINGS / BACKHEAD BEARING

- Inspect for damage such as cracks and deformations.
- Replace if necessary.
GENERAL ASSEMBLY INSTRUCTIONS

• Assembly should be performed in a clean environment.

• All parts should be cleaned thoroughly and wiped dry before assembly.

• Oil all parts by hand using Rock Drill Oil to insure easy assembly.

• Coat all thread connections with a thread compound to allow joints to thread easily.

HAMMER ASSEMBLY

• Select the larger outside diameter end of the case to be the chuck end.

• Insert the snap ring into the groove located nearest to the chuck end of case, making sure it seats properly in the groove. Install the bit bearing and bit bearing retainer o-ring.

• Insert the bit retaining rings, with the o-ring installed, in the chuck end of the case.

• Thread the chuck into the case and hand tighten. The chuck shoulder should sit flat against the bottom of the case.

• If the piston sleeve was removed, install new sleeve before installing piston in hammer. See page 14 for instructions on installing piston sleeve. Slide the piston in the backhead end of the case. Push the piston all the way to the chuck end. The piston should ride in the case very smoothly.

BACKHEAD / FEED TUBE ASSEMBLY

• Place the backhead on the bench with the API threads facing down. Install the backhead o-ring into the groove located on the case thread outside diameter.

• Insert the backhead bearing in the groove located on the thread outside diameter.

• Place the feed tube o-ring into the groove located just under the pin hole.

• Drop the choke into the feed tube and tap into place using the small rod.

• Insert check valve guide into feed tube over choke.

• Place the check valve and check valve spring in the backhead.

• Using a rubber mallet, tap the feed tube into the backhead, aligning the hole on the feed tube with the hole in the backhead.
- Using a rubber mallet, tap the pin into the hole, seating it through both the feed tube and backhead equally.
- Screw the backhead into the case.

CAUTION

DUE TO CLOSE TOLERANCES BETWEEN THE DCS5 INTERNAL PARTS AND THE CASE, NUMA CAN NOT ACCEPT RESPONSIBILITY FOR DAMAGE CAUSED BY WELDING ON THE CASE OD. WELDING ON THE CASE CAN CREATE DISTORTION, CAUSE PREMATURE FAILURE AND VOID THE WARRANTY. CONTACT NUMA FOR SPECIAL INSTRUCTIONS IF WELDING THE CASE BECOMES UNAVOIDABLE.

PISTON SLEEVE INSERTION

- To insert a new sleeve you will need a sleeve insertion tool #016337, a 1-1/8" (28.5 mm) diameter rod at least 6" (153 mm) long with smooth ends, and a mallet or press.
- Stand the piston vertical, strike end down, on a clean work area. Putting oil in the piston under cut, end bore, insertion tool and on the sleeve will make inserting the sleeve much easier. Place the sleeve insertion tool over the hole of the piston. The insertion tool has a protruding angle, use the angle to centralize the insertion tool on the piston. The sleeve has two diameters, place the smaller diameter down or into the insertion tool first. Refer to figure 2-7A and 2-7B.
The sleeve has a cut along it and there is a slight taper in the insertion tool. Place the 1-1/8" (28.5 mm) rod on the top edge of the sleeve on both sides of the cut in the sleeve. As the sleeve is forced into the insertion tool it will coil. Keep the rod on both sides of the cut in the sleeve as it is forced into the insertion tool. This is shown in figure 2-7C and 2-7D.

With the sleeve inserted into the insertion tool, use a press or mallet to tap on the 1-1/8" (28.5 mm) rod and force the sleeve down through the insertion tool, small end bore of the piston (figure 2-7E) and into the undercut (figure 2-7F).
SECTION IV
AIR CONSUMPTION CHARTS
DCS5

DRILL PRESSURE (BAR)

DRILL PRESSURE (PSI)

CFM

L/SEC

SOLID CHOKES

1/8 (3.2mm) CHOKES

3/16 (4.8mm) CHOKES

1/4 (6.4mm) CHOKES
SECTION V
LUBRICATION

The DCS5 hammer requires a continuous supply of the correct type Rock Drill Oil or an adequate application of Numa Enviro Lube. The DCS5 hammer consumes at least two quarts (2 litres) of Rock Drill Oil per hour in order to maintain adequate lubrication. See table 5-1 for recommended Rock Drill Oil.

As an alternative to Rock Drill Oil, Numa Enviro Lube provides continuous protection for the DCS5 when 3 oz. (.09 litres) are used every 300' (92 m) or four hours of drilling, whichever occurs first. Numa Enviro Lube is utilized in 3-1/2" to 6" hammers only.

<table>
<thead>
<tr>
<th></th>
<th>Medium SAE 30</th>
<th>Heavy SAE 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shell</td>
<td>Air Tool Oil S2 A 150</td>
<td>Air Tool Oil S2 A 320</td>
</tr>
<tr>
<td>Texaco / Caltex</td>
<td>Rock Drill Lube 100</td>
<td>Rock Drill Lube 320</td>
</tr>
<tr>
<td>Chevron</td>
<td>Vistac 150</td>
<td>Vistac 320</td>
</tr>
<tr>
<td>Conoco</td>
<td>Conoco 150</td>
<td>Conoco 320</td>
</tr>
<tr>
<td>Numa Bio Blend</td>
<td>RDP 150</td>
<td>RDP 320</td>
</tr>
</tbody>
</table>

Table 5-1
Recommended Rock Drill Oil

CAUTION
ROCK DRILL OILS AND NUMA ENVIRO LUBE ARE THE ONLY ACCEPTABLE LUBRICANTS. SAE 50 ROCK DRILL OIL SHOULD BE USED IN AMBIENT TEMPERATURES OF 80° FAHRENHEIT (27° CELSIUS) OR HIGHER. CONTACT NUMA FOR ACCEPTANCE OF ALTERNATIVE ROCK DRILL LUBRICANTS.

CAUTION
THE DCS5 HAMMER, AS WITH ANY MACHINE, REQUIRES CONTINUOUS LUBRICATION. THE FAILURE TO SUPPLY ADEQUATE LUBRICATION TO THE HAMMER CAN CAUSE PREMATURE FAILURE AND MAY VOID THE WARRANTY.
SECTION VI
STORAGE

When storing a DCS5 hammer, it is important to take the necessary steps in order to insure a smooth operation after restarting.

When the hole is completed and the hammer is to be inactive for several weeks or longer the following steps should be followed:

Each drill rod should be blown clear of all water. During this process, turn on the in line lubricator and blow until the rock drill oil can be seen from the bottom end of each drill rod. In addition, each rod (pin and box end) should be wiped clean and capped to prevent foreign contaminants from sticking to the connector ends.

SHORT TERM STORAGE

When the DCS5 hammer will be stored for only a short period of time the following steps should be taken:

• Blow the hammer clear of all water.
• Pour one cup of Rock Drill Oil into the backhead.
• Turn the air on and cycle for 10 seconds. This will lubricate the internal parts.
• Cap the backhead and chuck end.
• Store the hammer horizontally in a dry environment.

LONG TERM STORAGE

When the DCS5 hammer will be stored for a long period of time the following steps should be taken:

• Blow the hammer clear of all water.
• If at all possible, the backhead and chuck should be broken loose on the drill rig, this is much easier than trying to do so in the shop.
• Disassemble the hammer.
• Inspect and wipe all the parts clean.
• Lubricate all the internal parts with Rock Drill Oil. See table 5-1 on page 18 for suitable Rock Drill Oils.

• Cap the backhead and chuck ends.

• Store the hammer horizontally in a dry environment.

RESTARTING

Before restarting the hammer after prolonged periods of inactivity, disassemble and inspect all internal hammer parts.

If any internal hammer parts have oxidized, use an emery cloth to polish each part. Wash each hammer part, wipe dry, relubricate with rock drill oil and reassemble the hammer.

CAUTION

FAILURE TO CHECK INTERNAL PARTS BEFORE RESTARTING THE HAMMER MAY CAUSE SERIOUS DAMAGE TO THE HAMMER.
SECTION VII
BUTTON BIT MAINTENANCE

GENERAL

Numa button bits are designed for fast penetration and long life. Keeping the carbide buttons sharp has a direct effect on both the penetration and the tool life.

As the bit wears flat, spots develop on the carbide buttons. These flat spots increase stress on the buttons causing the bit to work harder, which may cause button failure. Bit sharpening can minimize these problems.

Gauge buttons will usually show the most wear and should be used to determine the frequency of bit sharpening. When the flats on the gauge buttons become a maximum of 1/8" (3 mm) wide it is time to resharpen. Refer to figure 7-1.

SHARPENING

The following tools are required to resharpen the bit:

- Hand grinder (20,000 r.p.m.)
- Silicon carbide wheel 1" (25 mm) diameter, 60 - 80 grit
- Bit stand
- Pencil

Place a mark on the center of the button flat. Grind the button to its original shape leaving the mark untouched. Refer to figure 7-1. It is important to leave the center of the flat untouched to insure concentricity.

![Button Resharpening Diagram](image)
SECTION VIII
RECOMMENDED SPARES

DCS5

<table>
<thead>
<tr>
<th>Product Description</th>
<th>Part Number</th>
<th>Class 1</th>
<th>Class 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backhead 3-1/2 Reg Pin</td>
<td>015906</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Backhead O-Ring</td>
<td>011602</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Backhead Bearing</td>
<td>012462</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Pin</td>
<td>015901</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Check Valve</td>
<td>011833</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Check Valve Spring</td>
<td>011615</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Check Valve Guide</td>
<td>016399</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Feed Tube Assembly</td>
<td>016401</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Choke Blank</td>
<td>016400</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Feed Tube Assembly</td>
<td>016394</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Feed Tube O-Ring</td>
<td>009157</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Piston w/ Reciprocating Sleeve</td>
<td>016402</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Reciprocating Sleeve</td>
<td>016334</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Case</td>
<td>016397</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Snap Ring</td>
<td>005305</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Bit Bearing</td>
<td>016396</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Bit Bearing Retainer O-Ring</td>
<td>005764</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Bit Retaining Rings</td>
<td>016398</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Bit Retaining Rings O-Ring</td>
<td>005571</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Chuck</td>
<td>012459</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Choke Set</td>
<td>016720</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Choke Blank</td>
<td>016400</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Choke 1/8"</td>
<td>016721</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Choke 3/16"</td>
<td>016497</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Choke 1/4"</td>
<td>016498</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

*For Complete Hammer Assembly #016550
Table 8-1*

NOTE

- **Class 1**: Represents a user of a DCS5 hammer that has readily available spare parts.
- **Class 2**: Represents a user of a DCS5 hammer that does not have readily available spare parts.